

Fig. 1. Pressure dependence of the Curie temperature in Fe_2^{P} and $Fe_2^{P}0.9^{As}0.1$.

using a gas generator with a vibrating-coil magnetometer, as described previously.⁴ The Curie-temperatures T_c were obtained at low (100 Oe) fields, and plots of T_c vs hydrostatic pressure P are shown in Fig. 1. The points are experimental, and the solid lines are the analytic functions (with P in kbar and ΔT_c in °C)

$$P = -0.252(\Delta T_{c}) -0.0012(\Delta T_{c})^{2} \text{ for Fe}_{2}P$$
(1)

$$P = -0.71(\Delta T_{c}) -0.0017(\Delta T_{c})^{2} \text{ for } Fe_{2}P_{0.9}As_{0.1}$$
(2)

Extrapolation of eq. (1) to the extremum defined by $\partial P/\partial (\Delta T_c) = 0$ gives a critical pressure $P_c = 13.3$ kbar above which the ground state of Fe₂P should no longer be ferromagnetic.

Surprisingly, there was no significant change with pressure in the magnetization per molecule, μ , at 58K. Examination of μ vs the applied field H at T = 58K showed no appreciable change on passing from 1 atm to 10 kbar pressure. However, measurement of μ vs T/T_c for Fe₂P gave strikingly different results for 1 atm and 10 kbar. At H = 10 kOe, the inflection in μ vs T occurs at T \approx 1.07 T_c at P = 1 atm, but at T \approx 1.15 T_c at P = 10 kbar. Furthermore, an extraordinarily large exchange enhancement of the susceptibility, which extends to temperatures well above T_c, is markedly greater at 10 kbar than at 1 atm. At P = 10 kbar and T = 1.02 T_c, a plot of μ vs H is extremely nonlinear, resembling the initial magnetization curve of a ferromagnet at T < T_c.

DISCUSSION

If the moment of Fe_2P were reduced from $\mu_0 = 3.0\mu_B$ because of conduction-band overlap of E_F , pressure should change z_d , and hence μ_0 ,

more dramatically than T_c . Therefore, we conclude that the moment of Fe_2P is reduced because the molecular fields are not strong enough to empty all the antibonding states of antiparallel spin.

The existence of antiparallel-spin electrons in the ground state would create a ferromagnetic spin-density wave in the magnetically ordered phase (antiparallel-spin excited electrons create spin waves), and a spin-density wave reflects a long-range antiferromagnetic component to the interatomic-exchange interactions. Since longer M-M separations decrease the width of the 3d bands, the relative importance of this antiferromagnetic component must decrease with increasing As concentration x, which would account for the sharp rise with x in T_c (from 221 to 443K)² over the interval $0 \le x \le 0.33$. On the other hand, pressure would increase the antiferromagnetic component, and the critical pressure P_c presumably marks a transition from a ferromagnetic spin-density wave to a metamagnetic state.

The remarkable susceptibility above T_c in Fe_P, and its enhancement by pressure, would seem to indicate that T_c is suppressed by pressure more rapidly than is the paramagnetic Curie temperature θ . Suppression of T_c relative to θ by weak, long-range antiferromagnetic interactions has been observed⁵ in the metamagnetic thiospinel Zn[Cr_2]S_4, which contains localized 3d electrons. In Fe_P, the ferromagnetic short-range order above T_c must be exceptional and appears to extend well above T_c , although the magnetic interactions are three-dimensional. This behavior is quite different from that found in CoS_{2-x}Se_x, where the ferromagnetic moment is also reduced because the bandwidth is too large. ⁶ The CoS_{2-x}Se_x 3d bands are broadened with x, and the ferromagnetic-to-metamagnetic transition is marked by a reduction in θ that makes $\theta < T_c.$ ⁷

Within the molecular-field approximation, the paramagnetic Curie temperature θ is given by

$$\theta = (2/3k)S(S+1)\sum_{v} z_{uv} J_{uv}$$
(3)

where z_{uv} is the number of v atoms near-neighbor to a u atom. If the interatomic exchange energy falls off more rapidly than linearly with decreasing atomic separation, then

$$J_{uv} \approx \sum_{\ell} J_{uv\ell}^{o} \sum_{j} \left[1 + \beta_{uv}^{j} \varepsilon_{j} - \frac{1}{2} \left(\gamma_{uv}^{j} \varepsilon_{i} \right)^{2} + \cdots \right]$$
(4)

The $J_{uv\ell}^{0}$ are components of the uv exchange interaction in the unstrained sample (P = 0) and $\beta_{uv}^{j} > 0$ because an $\varepsilon_{j} < 0$ increases the 3d bandwidth, thereby lowering Juv. The strain at equilibrium is given by⁴

$$\varepsilon_{j} = \sum_{i} K_{ji} \left[\sum_{u,v} (\partial J_{uv} / \partial \varepsilon_{i}) \vec{S}_{u} \cdot \vec{S}_{v} - P + T \sum_{k} \alpha_{k} c_{ki} \right]$$
(5)

where $K_{ji} = cofactor c_{ij}/(determinant c_{ij})$, S_u and S_v are the thermodynamic expectation values of the spins at sites u and v, α_k is a thermal-expansion coefficient, and the c_{ki} are elastic constants. Since μ_0 appears to be

1358